On CR-submanifolds having holomorphic vector fields on them

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Holomorphic vector fields and minimal Lagrangian submanifolds

The purpose of this note is to establish the following theorem: Let N be a Kahler manifold, L be an oriented immersed minimal Lagrangian submanifold of N without boundary and V be a holomorphic vector field in a neighbourhood of L in N . Let div(V ) be the (complex) divergence of V . Then the integral ∫ L div(V ) = 0. Vice versa suppose that N is Kahler-Einstein with non-zero scalar curvature a...

متن کامل

On the Holomorphic Extension of Cr Distributions from Non Generic Cr Submanifolds of C

We give a holomorphic extension result from non generic CR submanifold of C of positive CR dimension. We consider N a non generic CR submanifold given by N = {N, h(N)} where N is a generic submanifold of some C and h is a CR map from N into C. We prove that if N is a hypersurface then any CR distribution on N extends holomorphically to a complex transversal wedge, we then generalize this result...

متن کامل

Some Remarks on Indices of Holomorphic Vector Fields

One can associate several residue-type indices to a singular point of a two-dimensional holomorphic vector field. Some of these indices depend also on the choice of a separatrix at the singular point. We establish some relations between them, especially when the singular point is a generalized curve and the separatrix is the maximal one. These local results have global consequences, for example...

متن کامل

Classification of Totally Umbilical CR-Statistical Submanifolds in Holomorphic Statistical Manifolds with Constant Holomorphic Curvature

In 1985, Amari [1] introduced an interesting manifold, i.e., statistical manifold in the context of information geometry. The geometry of such manifolds includes the notion of dual connections, called conjugate connections in affine geometry, it is closely related to affine geometry. A statistical structure is a generalization of a Hessian one, it connects Hessian geometry. In the present paper...

متن کامل

Integration of Vector Fields on Smooth and Holomorphic Supermanifolds

We give a new and self-contained proof of the existence and unicity of the flow for an arbitrary (not necessarily homogeneous) smooth vector field on a real supermanifold, and extend these results to the case of holomorphic vector fields on complex supermanifolds. Furthermore we discuss local actions associated to super vector fields, and give several examples and applications, as, e.g., the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications, Faculty Of Science, University of Ankara Series A1Mathematics and Statistics

سال: 1998

ISSN: 1303-5991

DOI: 10.1501/commua1_0000000402